Calcium’s Effect on Potato Quality and Storability

Can Raising Seed Tuber Tissue Calcium Improve Its Performance?

by Christopher C. Gunter and Jiwan P. Palta1, Department of Horticulture, University of Wisconsin-Madison

Importance of Calcium in Plants

Calcium plays a critical role in plant growth, development and the maintenance/modulation of many cell functions (Poovaiah and Reddy, 1993). This becomes evident when considering the importance of calcium in membrane structure and function as well as the structure of the cell wall. Calcium in the extracellular solution is necessary for the maintenance of selective permeability, i.e. membrane integrity. Calcium also provides stable, but reversible, inter-molecular linkages between pectic molecules, resulting in cell wall rigidity. The presence of extracellular calcium increases the bond between the cell wall and the outer face of the cell/plasma membrane (Palta, 1996). Furthermore, the role of calcium as a secondary messenger in plant response to many environmental and hormonal signals [touch, wind, gravity, light, cold, heat, auxin, gibberellic acid, abscisic acid, and fungal elicitors] has been documented (Poovaiah and Reddy, 1993), and the impact of these environmental (drought, cold, heat) and biotic stresses on plants can be mediated by changes in cytosolic calcium (Palta, 1996). There is some evidence that calcium application can

1 Research assistant and professor respectively. Use of trade names does not imply endorsement of the products named or criticism of similar ones not named.
Table 1. Mean calcium content of tuber medullary tissue and soil test calcium levels by cultivar and year. Due to experimental design and seasonal variability intercultivar and interyear comparisons are not valid.

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Year</th>
<th>Mean Calcium Content</th>
<th>Soil Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ammonium Nitrate</td>
<td>Calculm Nitrate</td>
</tr>
<tr>
<td>Superior</td>
<td>1995</td>
<td>168.5b</td>
<td>202.7a</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>297.7b</td>
<td>309.4a</td>
</tr>
<tr>
<td></td>
<td>1997</td>
<td>172.9b</td>
<td>201.5a</td>
</tr>
<tr>
<td>Atlantic</td>
<td>1995</td>
<td>101.7b</td>
<td>122.3a</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>220.5b</td>
<td>246.3a</td>
</tr>
<tr>
<td></td>
<td>1997</td>
<td>110.4a</td>
<td>116.3a</td>
</tr>
<tr>
<td>Dark Red Norland</td>
<td>1995</td>
<td>128.2b</td>
<td>156.3a</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>187.5b</td>
<td>204.9a</td>
</tr>
<tr>
<td></td>
<td>1997</td>
<td>98.2b</td>
<td>103.1a</td>
</tr>
<tr>
<td>Snowden</td>
<td>1996</td>
<td>229.8b</td>
<td>252.4a</td>
</tr>
<tr>
<td></td>
<td>1997</td>
<td>177.5b</td>
<td>203.8a</td>
</tr>
<tr>
<td>Russet Burbank</td>
<td>1997</td>
<td>98.7b</td>
<td>142.8a</td>
</tr>
</tbody>
</table>

1 µg Ca/g dry wt. (ppm) of medullary and pith tissue internal to cortical ring.
2 Means within the same row, having the same letter are not significantly different.
3 Ammonium acetate extractable soil Ca in parts per million (ppm).

mitigate heat (Tawfik et al., 1996) and frost stress on potatoes (Vega et al., 1996).

Importance of Calcium to Potato
Calcium has also been linked to several key issues of quality in potato.

toes (Solanum tuberosum L.). It has been shown that storage rot, due to Erwinia carotovora pv. atroseptica, decreases as tissue calcium concentration increases (McGuire and Kelman, 1984, 1986). In addition, the incidence of internal disorders such as hollow heart, internal brown spot, and brown center decreased when the calcium concentrations in the tuber tissue were increased (Coller et al., 1978 and Tzeng et al., 1986). Thus increasing tuber tissue calcium can significantly improve tuber quality and storability.

Storage organs, such as potato tubers, are naturally deficient in calcium. Since calcium moves with the water in the xylem, transpiration is the primary pathway for calcium transportation (Clarkson, 1984). Potato tubers, which are surrounded by moist soil, will have less transpiration as compared to above-ground parts of the plant. Consequently, low-transpiring organs, such as fruits and tubers, accumulate much less calcium per unit of fresh weight than leaves.

THE HUFFHINES BROTHERS HAVE CONVERTED
17 OF THEIR IRRIGATION WELLS TO JOHN DEERE ENGINES, SO FAR.

"After three more seasons, we plan to have John Deere diesel engines on all 50 of our wells," says Eddie Huffhines. "Besides fuel savings, the John Deere diesels are reliable and durable. They start every time. These John Deere engines hold up their side of the bargain, and so does our John Deere dealer."

John Deere irrigation engines are available in models from 20 to 500 horsepower. For more information on irrigation engines, contact your John Deere ag dealer.

Specify reliable John Deere engines for your irrigation system.

SUPERIOR DIESEL
1632 N. Stevens St.
PO Box 1187
Rhineland, WI 54501
Tel.: (715) 369-5900

Branch Office:
461 East Fenn Rd.
Coldwater, MI 49036
Tel.: (517) 278-2445
Table 2. Total tuber yield by cultivar and year. Due to experimental design and seasonal variability intercultivar and interyear comparisons are not valid. LSMeans within the same row having the same letter are not significantly different (based on SAS General Linear Model procedure p<0.000).

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Year</th>
<th>Total Yield¹</th>
<th>Ammonium Nitrate</th>
<th>Calcium Nitrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superior</td>
<td>1995</td>
<td>1.50b ± 0.13</td>
<td>1.85a ± 0.11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>2.37a ± 0.06</td>
<td>2.45a ± 0.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1997</td>
<td>1.34a ± 0.06</td>
<td>1.38a ± 0.06</td>
<td></td>
</tr>
<tr>
<td>Atlantic</td>
<td>1995</td>
<td>1.84a ± 0.13</td>
<td>1.77a ± 0.12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>2.96b ± 0.09</td>
<td>3.15a ± 0.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1997</td>
<td>1.78a ± 0.07</td>
<td>1.80a ± 0.07</td>
<td></td>
</tr>
<tr>
<td>Dark Red Norland</td>
<td>1995</td>
<td>1.37b ± 0.09</td>
<td>1.56a ± 0.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>2.65a ± 0.07</td>
<td>2.68a ± 0.08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1997</td>
<td>1.36a ± 0.06</td>
<td>1.39a ± 0.06</td>
<td></td>
</tr>
<tr>
<td>Snowden</td>
<td>1996</td>
<td>2.89a ± 0.09</td>
<td>3.04a ± 0.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1997</td>
<td>1.47a ± 0.05</td>
<td>1.45a ± 0.05</td>
<td></td>
</tr>
<tr>
<td>Russet Burbank</td>
<td>1997</td>
<td>1.57a ± 0.06</td>
<td>1.66a ± 0.06</td>
<td></td>
</tr>
</tbody>
</table>

¹ kg/plant total tuber yield

Potato tubers accumulate calcium directly from the surrounding soil via functional roots on the tuber and stolon (Kratzke and Palta, 1985). On a practical level, these results indicate that the placement of calcium is important for enhancing calcium uptake by the tuber (Kratzke and Palta, 1986). Maximum increases in tuber calcium occur when calcium is mixed into the hill where the tubers are developing (Simmons and Kelling, 1987 and Simmons et. al. 1988). It is, therefore, of critical importance to realize that if improvements in tuber quality are to be made by increasing tuber calcium, the supplemental calcium application must be made during the tuber production cycle. In our related studies we have shown that the tuber calcium level can be enhanced by the application of calcium during the bulking period.

Elevating the level of tuber tissue calcium during the seed production cycle may have an impact on the quality of the plant the seed piece produces. The objective of the studies reported here was to enhance seed tuber calcium during the seed tuber production cycle and study the impact of this calcium enhancement on performance the following year.

Experimental Methods

These studies were conducted over
three seed production cycles and involved the following cultivars: Superior, Atlantic, Dark Red Norland, Snowden, and Russet Burbank. Calcium enhancement of seed tubers took place at a commercial seed production farm in northern Wisconsin, and the soil types were primarily silt loam (Superior, Atlantic, Dark Red Norland, Snowden) and Plainfield sand (Russet Burbank). The calcium content of these soils ranged from 1,060 lbs. Ca/acre to 2,680 lbs. Ca/acre (See Table 1). Nutrient applications were made three times during the tuber bulking period: hilling, hill ing +3 weeks, and hilling +6 weeks. The nutrients were dissolved in one gallon of irrigation water contained in a watering can and then hand applied to each 10-foot row. The total calcium delivered was 150 lbs. Ca/acre (50 lbs. Ca/application) from liquid calcium nitrate (9-0-0-11, Hydro Agri of North America) with nitrogen balanced across treatments using ammonium nitrate (34-0-0) delivered at the same application times (50 lbs. nitrogen/application). The total nitrogen for all plots was 225 lbs./acre, regardless of source.

The seed tubers were harvested at maturity and stored in cold conditions until planting the following spring. Prior to planting, the seed tubers were washed with deionized water to remove any remaining soil, and a longitudinal slice, approxi-

Figure 1: Impact of supplemental calcium nitrate application on tuber tissue calcium concentration of five potato cultivars (Superior, Atlantic, Dark Red Norland, Snowden, and Russet Burbank). Each tuber was sampled and analyzed for tuber calcium concentration individually (tissue internal to the cortical ring). Data are on the proportion (percentage) of tubers within various ranges of calcium concentration with ammonium nitrate and calcium nitrate applications. All values are expressed in ppm Ca/g dry weight.

Your Vegetables Are Technically Advanced... Why Isn’t Your Storage?

Call Commercial Roofing
We Can Help!

- Sprayed Urethane Foam Insulation
- Urethane Foam Roof & Coatings
- Fully-Adhered FleeceBack System
- Mechanically Attached Membrane System

2300 Maple Dr, PO Box 607
Plover WI 54467
1-800-236-2178
e-mail: commroof@coredcs.com
Visit our Website:
www.commercial-roofing.com

WEB TOP THEM ALL
THE BADGER COMMONTATER 19

Marilyn 0.25 inch, was taken from the middle of each tuber. Care was taken to ensure that the apical bud region and stolon attachment were removed as well as the skin and cortical tissue ring. Trimmed slices from each individual tuber were diced, dried in a forced air oven, ground to pass a 40 mesh screen, and ashed in a muffle furnace. Individual tuber samples were prepared for atomic absorption measurement by digesting the ash with 2N HCl and then brought to a standard volume with lanthanum chloride solution. The calcium content of each tuber sample was read using an atomic absorption flame spectrophotometer (Varian model Spectra AA20).

Seed pieces were evaluated at the Hancock Agriculture Experiment Station (Plainfield Sand, soil calcium ranging from 720–860 lbs./acre) for their performance. At planting each seed tuber to be evaluated was sliced with a potato chip slicer in the field and individual tubers were planted at two foot intervals to minimize intrarow competition between the plants. This also facilitated total tuber yield measurements from each individual seed piece. (Individual seed tubers were tracked at all times with a code number and tag, which was buried with each seed piece.) Tubers from each treatment (calcium nitrate or ammonium nitrate) during the seed production year were handled identically in the evaluation year and received exactly the same standard nutrient regime (i.e. no supplemental calcium was given during the evaluation year). Total yield evaluations were made on each plant by hand harvesting and weighing all of the tubers produced.

Results
We analyzed over 3,000 individual tubers during the past three seasons, and as a result of this analysis we conclude that: It is possible to increase the calcium concentration of the seed tuber tissue, even in soils that test high in native calcium, with the supplemental application of calcium.

Results of the seed tuber calcium concentration are given in Table 1. The mean tuber calcium varied from year to year for the same cultivar, indicating seasonal effects on the calcium accumulation in the tubers. In the three years of the study 11 out of

FOR SALE

3 4-row Kverneland UN 3200 Potato Planters with Raven 440 units for Admire applications
1 Planter Filler Elevator
2 8-row Harriston Row Markers with 10,000# capacity
1 Milestone Model 60D, 60’ Seed Cutter SOLD
1 Milestone Barrel Duster SOLD
1 1994 Self-Propelled Gallenberg Aire-Glide Model A-1000XT 4-wheel Drive Sprayer w/120’ booms
2 11 Shank Landoll Landmaster IIs

1 6 Leg Tye Paratill
1 4-row Dammer Dyker
1 15’ Yetter Rotary Hoe
1 FMC Sprayer with 110’ Booms
2 Ford 152 6 bottom Plows with Packer
1 Ford 242 23’ Disc
1 10’ Ford Chisel Plow
1 15’ Brillion Chisel Plow
1 2-row Logan Potato Harvester with Blower
1 Spudnik Van Unloader

Call 715-228-4711
the 12 trials showed a significant increase in tuber calcium concentration with the application of calcium nitrate (based on L.S.D. with $\alpha = 0.05$). In some cases this increase in calcium concentration was over 45 percent as compared to the ammonium nitrate treatment (Table 1, Russet Burbank). It is also important to note that this increase in calcium concentration was found even in soils that tested 1,340 ppm of available calcium (Table 1, Superior 1995).

Supplemental calcium application results in a higher proportion of tubers with increased tissue calcium.

In addition to the increase in the mean tuber calcium we found a dramatic shift in the proportion of tubers with a higher amount of calcium (Figure 1). For example, in the cultivar Atlantic, the percentage of tubers containing over 150 ppm calcium increased from 20 to 50 percent with supplemental calcium nitrate application (Figure 1). Similarly, in the cultivar Superior, the percentage of tubers containing over 190 ppm calcium increased from 40 to nearly 70 percent. Such results were also found for the Dark Red Norland, Snowden, and Russet Burbank cultivars.

Some cultivars consistently accumulate higher calcium than others.

There are variations in the accumulation of calcium among cultivars and during different seasons. (Table 1). However, similar differences are found between cultivars from season to season. For example, Superior and Snowden consistently had higher calcium than Atlantic and Dark Red Norland (Table 1). Thus, for different cultivars, there appears to be a different threshold of calcium uptake by the tubers. It is this level that may be critical for the improvement of tuber seed piece quality. These results also suggest that there is genetic variability for tuber calcium among various cultivars. Which means that there may be a possibility to improve tuber calcium and calcium related quality characteristics via a directed plant breeding program focused on maximizing tuber tissue calcium concentrations.

Enhanced calcium may improve seed tuber performance.

Seed tubers with enhanced calcium concentration tended to produce plants with higher tuber yield, although the results were not generally statistically significant (Table 2). In 5 of the 12 tests, we found yield increases greater than 5 percent, from tubers raised with supplemental calcium nitrate. Only in three cases was this yield increase statistically significant (based on the General Linear Models Procedure of LSMeans separation p <0.20). Interestingly tuber calcium and tuber yield was highest in 1996 for all the cultivars (Table 2). We are continuing this research to evaluate the potential of improved performance of seed tubers through and by increase in tissue calcium levels.

Literature Cited

Simmons, K.E. and K.A. Kelling.

Continued on page 46

For Sale

- Edp Mini Bagger - Electronic Scale 20# to 100# Single Head
- Signode ML Carton Strapper
- Filper/Magnuson 16-head Weigh-O-Matic
- Schulte 88” Snow Blower for 3-Point Hitch
- Fishbein L-Belt 7’x8” wide
- Bostitch Stapler
- Spudnik Culvert Straightener - Sold
- Gallenberg Round Collection Tables 10’ and 8’
- 2 100# or 50# Bale or Bag Stacking Racks

All equipment in very good to excellent shape.

Phone 608-339-7117

MARK YOUR CALENDAR

If you would like an event listed in the MARK YOUR CALENDAR section of the CommonTater, please send the information to: WPVGA, P.O. Box 327, Antigo, WI 54409 or call 715-623-7683.

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Location</th>
<th>Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEPTEMBER</td>
<td>12</td>
<td>12TH ANNUAL SPUD BOWL</td>
<td>Goerke Field, Stevens Point, WI
 Contact: Karen Schanock 715-534-1940</td>
</tr>
<tr>
<td>OCTOBER</td>
<td>16-20</td>
<td>PRODUCE MARKETING ASSOCIATION CONVENTION & EXPO</td>
<td>New Orleans, LA
 Contact: 302-770-7100</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>GIS COMPUTER TECHNOLOGIES AND AREA-WIDE PROJECTS DEMONSTRATION (10:00 TO 12:30)</td>
<td>UW-Hancock Agricultural Research Station, Hancock, WI
 Contact: Deana Sexson 715-346-1316</td>
</tr>
<tr>
<td>NOVEMBER</td>
<td>4-5</td>
<td>49TH ANNUAL WISCONSIN POTATO & VEGETABLE INDUSTRY SHOW</td>
<td>Portage County Highway Facility, Plover, WI
 Contact: Karen Walters or Stacy Karz 715-623-7683</td>
</tr>
<tr>
<td></td>
<td>20-21</td>
<td>RED RIVER VALLEY POTATO GROWERS ASSOCIATION ANNUAL MEETING</td>
<td>Holiday Inn, Fargo, ND
 Contact: RRVPGA 218-773-3663</td>
</tr>
<tr>
<td>DECEMBER</td>
<td>3-5</td>
<td>17TH ANNUAL NATIONAL POTATO COUNCIL SEED SEMINAR</td>
<td>Sea Tac Double Tree Hotel, Seattle, WA
 Contact: Vicki Hawley 360-398-2196</td>
</tr>
<tr>
<td>JANUARY</td>
<td>12-15</td>
<td>NPC 50TH ANNIVERSARY ANNUAL MEETING</td>
<td>Westin Maui, Ka’Anapali Beach, HI
 Contact: 303-773-9295</td>
</tr>
<tr>
<td></td>
<td>20-22</td>
<td>GREAT LAKES VEGETABLE GROWERS CONVENTION</td>
<td>Grand Center, Grand Rapids, MI
 Contact: Byron Carpenter 616-842-8211</td>
</tr>
<tr>
<td>MARCH</td>
<td>11-13</td>
<td>1999 CHIPPING POTATO SEMINAR</td>
<td>World Golf Village Resort, St. Augustine, FL
 Contact: Michigan Potato Industry Commission 517-669-8377</td>
</tr>
</tbody>
</table>